Searching for Sub-Gev Dark Matter at Fixed Target Neutrino Experiments

Patrick deNiverville

University of Victoria

TAUP2013

[P. deNiverville, D. McKeen & A. Ritz '12, arXiv: 1205.3499 [hep-ph]]

Motivation

Experimental limits for WIMP-Nucleon cross section

[XENON Collaboration 2012, arXiv:1207.5988 [astro-ph]]

A Low Mass Dark Matter Scenario

$$\mathcal{L} = -\frac{1}{4}V_{\mu\nu}^2 - \frac{1}{2}m_V^2V_{\mu}^2 + \kappa V_{\nu}\partial_{\mu}F_{\mu\nu} + |(\partial_{\mu} - e'V_{\mu})\chi|^2 - m_{\chi}^2|\chi|^2 + \mathcal{L}_{h'}$$

- V can be produced through kinetic mixing with γ at $\mathcal{O}(\kappa^2)$.
- χ serves as Dark Matter candidate, couples to SM through the V.
 - ▶ $2m_{\chi} < m_V$ for production in *V*-decay, keep *V* lifetime short.
- The U(1)' coupling strength α' must be kept small to maintain perturbativity.
 - We set $\alpha' \sim \alpha_{\rm em}$, but could be varied quite widely.
- Requiring that $\Omega_{\chi} \sim \Omega_{\rm matter}$ relates κ , α' , m_{χ} and m_{V} [Pospelov, AR & Voloshin '07].

Scenario Parameter Space

Dark Force Parameter Space

Direct Detection Parameter Space

Dark Force Parameter Space

The standard dark force limit plot, $m_V < 2m_\chi$ [Intensity Frontier Workshop, Hewett, Werts et al '12]

Adapted for a dark matter scenario with $m_V>2m_\chi$, short lived V and $BR(V \to {
m DM}) \sim 1$.

Fixed Target Neutrino Experiments

- \bullet Experiments involve impacting a target with $\sim 10^{20}-10^{22}$ protons to produce a high intensity neutrino beam.
 - Neutrinos produced from decays of charged mesons.
 - Can select for neutrino or antineutrino beams through the use of magnetic focusing horns.
- Non-neutrinos are removed from the beam before it reaches the target to reduce background.
- Several fixed target neutrino experiments were investigated: LSND, MiniBooNE. T2K. MINOS.

<ロト <値 > < 重 > < 重 > の < で

Dark Matter Beams

- Fixed target neutrino experiments could also produce large numbers of light, hidden sector particles.
- So long as they are long-lived and neutral under SM gauge groups they could reach the neutrino detector, too.
 - Results in the production of a dark matter beam alongside the neutrino beam.
- Examined two production methods: neutral meson decay and direct parton-level production.

Detecting Dark Matter with Neutrino Detectors

- In the most straightforward analyses, without special timing or energy cuts, dark matter signal manifests as neutral-current-like elastic scattering events in excess of those expected from neutrinos.
 - ► For our analyses, neutrino events are the background. Need to generate a significant number of excess events to obtain useful sensitivity.
- Interaction channel chosen for analysis of each experiment dependent on backgrounds and the neutral-current elastic scattering analyses published.

LSND

MiniBooNE

T2K - POD

T2K - POD

Reducing the Neutrino Background

- Sensitivity can be improved by either reducing the number of neutrinos reaching the detector, or by differentiating between likely neutrino and dark matter events.
 - Timing Cuts DM beam takes longer to reach the detector than neutrino beam
 - ► Energy Cuts DM energy distribution peaks at a higher energy than the neutrino distribution.
- Target-off/Beam Dump runs
 - ► Can dramatically decrease the neutrino flux by sending a proton beam directly into the beam dump, while leaving DM flux largely unchanged.
 - ► Proposal submitted for extra 2 × 10²⁰ POT off-target run at MiniBooNE. [arXiv:1211.2258v1, with Richard Van de Water] .

MiniBooNE Proposal

Conclusion

- Thermal relic WIMP with a sub-GeV mass and interactions mediated by a light U(1)' vector boson provides a viable dark matter candidate.
- This candidate escapes many of the best limits imposed by direct, indirect and collider searches.
- Fixed Target Neutrino Facilities possess sensitivity to these hidden-sector scenarios.
 - Capable of probing regions of the hidden-sector parameter space currently inaccessible to other techniques while using a straightforward counting approach.
 - ▶ MiniBooNE can provide great limits on V masses below m_{η} .
 - ▶ T2K provides sensitivity at $\mathcal{O}(1 \text{GeV})$.
- Running a Fixed Target Neutrino Experiment in an off target mode could provide new sensitivity, while requiring far fewer POT
- Backgrounds in all cases can be further reduced by introducing timing and energy cuts.
 - ► Experiments with far detectors, such as T2K with Super-K, may be able to completely seperate dark matter events from neutrino events using timing cuts.

Backup Slides

Choosing a Portal

There is a limited set of low dimension (relevant or marginal) operators which can be used to write the interactions between a neutral hidden sector and the Standard Model:

- Vector Portal: A new U(1)' vector (V) kinetically mixed with hypercharge. $\mathcal{O}_4 = -\frac{\kappa}{2}V^{\mu\nu}B_{\mu\nu}$.
- Higgs Portal: A scalar sector (S) coupled to the Higgs. $\mathcal{O}_4 = \Lambda_S S^2 H^\dagger H$
- Neutrino Portal: A set of Right-Handed neutrino-like Majorana fermions. $\mathcal{O}_4 = Y_N^{ij} \bar{L}_L^i H N^j$

While all three can produce dark matter candidates we will focus our attention on the bilinear interactions of the Vector and Higgs Portals.

Choosing a Portal

For $m_V > 2m_\chi$

- U(1)['] Mediator Vector Portal
 - ▶ Fermionic DM s-wave annihilation and an increased dark matter number density due to the low dark matter mass results in a visible distortion of the CMB. Also leads to a more visible signal from galactic center. [Padmanabhan & Finkbeiner et al '05; Slatyer et al '08]
 - Scalar DM p-wave annihilation allows this scenario to be viable for small κ, as the annihilation rate is suppressed by an additional factor of v. A small v heavily suppresses the dark matter annihilation rate.
- Scalar Mediator Higgs Portal
 - ► **Scalar DM** s-wave annihilation excludes this scenario for the reasons given previously.
 - ▶ Fermionic DM p-wave annihilation renders this model viable. However, fermionic DM requires a large mixing, which could affect B decays. [Bird, Kowalewski & Pospelov 2006]

Experimental Constraints

Cosmological:

- Big Bang Nucleosynthesis So long as $m_{\rm DM}>1-2$ MeV, freeze-out occurs before BBN [Serpico & Raffelt '04, Jedamzik & Pospelov '09] .
- Cosmic Microwave Background Annihilation through p-wave, has little effect [Padmanabhan & Finkbeiner et al '05; Slatyer et al '08] .

Particle Physics:

- Electron and muon g-2 Affects the value of g-2. Quite strong at low mass, but weakens with increasing mass [Fayet; Pospelov '08;] .
 - ightharpoonup Can also bring theoretical value of muon g-2 into closer agreement with experimental value.
- $V \rightarrow I^+I^-$ Weak so long as $BR(V \rightarrow 2\chi) \sim 1$, holds for most of parameter space of interest. [Bjorken et al. '09; Batell et al '09; Reece & Wang '09; MAMI '11, APEX '11, BaBar'12, ...]
- Missing energy in rare decays
 - ▶ Sensitivity to low m_V provided by π, K decays. [E949]
 - Need to use J/ψ , $\Upsilon(1S)$ decays for higher masses of m_V . [BESII'08, BaBar'09, Fayet'09]

Dark Force Parameter Space

- [1] E787. Atiya'92
- [2] CDF. Shoemaker'12 [arXiv:1112.5457 [hep-ph]]
- [3] KLOE, APEX, MAMI, BaBar. Hewett'12 [arXiv:1205.2671 [hep-ex]]
- [4] BES. Ablikim'08 [arXiv:0710.0039 [hep-ex]]
- [5] E821. Pospelov'08. [arXiv:0811.1030 [hep-ph]]

- [6] Bouchendira'10, [arXiv 1012.3627 [physics.atom-ph]], Gabrielsi'10, [arXiv:1009.4831 [physics.atom-ph]], Aoyama'12, [arXiv:1205.5368 [hep-ph]], Endo'12, [arXiv:1209.2558 [hep-ph]].
- [7] E949. Artamov'08, [arXiv:0808.2459 [hep-ex]]
- [8] LEP. Hook'10 [arXiv:1006.0973 [hep-ph]]
- [9] BaBar. Aubert'08 [arXiv:0808.0017 [hep-ex]], Izaguire'13 [arXiv:1307.6554 [hep-ph]], Essig'13 [to appear]

September 10, 2013

Effect on g-2

- New 1-loop diagram with inserted V contributes to g-2.
- For the coloured band through the parameter space, the agreement between theory and experiment is improved. [Pospelov '08]

September 10, 2013

Direct Detection Parameter Space

- Increasing m_V shifts all the non-direct detection limits downward, as $\sigma_{\rm N} \propto \frac{1}{m_{\rm v}^4}$.
- CRESST-I provides slightly weaker bounds than DAMIC in the very low mass region.
- XENON100 provides the best limits for $m_{\rm y} > 9 {\rm ~GeV}$.

LSND

MiniBooNE Proposal

- Can direct the proton beam around the target and into the 50m absorber to reduced neutrino signal by factor of \sim 40.
 - \blacktriangleright Optionally, could also deploy a 25m absorber to reduced backgrounds by a factor of \sim 80.
- MiniBooNE has a timing resolution of $\sim 1.8 \rm ns.$ Can impose a timing cut of 3 $\rm ns$ to remove 90% of the neutrino signal.
 - ▶ Can increase cut to 6 ns to remove 99.9% of neutrino signal.
 - ▶ Does reduce sensitivity to lower dark matter masses.

[arXiv:1211.2258v1, with Richard Van de Water]